
Tank-automotive & Armaments COMmand
UNCLASSIFIED

31 May 2001

Jeff Jaster
Electronic Architecture Team

Email: jasterj@tacom.army.mil
(810) 574-5106 / DSN 786-5106

Fax (810) 574-5933
U.S. Army Tank-Automotive RD&E Center (TARDEC)

Vetronics Technology Area
(AMSTA-TR-R, Mailstop 264)

Warren, MI 48397-5000

Vetronics Application Programmer
Interfaces (API’s)

25/31/2001

Agenda

• What is an API?
• API Based Software Reference Architecture
• Operating Environment (OE) API
• Adaptable Graphics Interface Language (AGIL) API
• Weapon Systems Mapping Services (WSMS) API
• Terrain Services API
• Performance, Analysis & Measurement API
• Station Management API

35/31/2001

What is an API?

• Provides a service that receives and operates on some type of
data, and returns data or some type of status regarding the
success or failure of the service attempted.
4Developed in a non-proprietary and open system format.
4Provides flexibility where ever possible.
4Layered and focused on interfaces.

• Provides traceability from API to defined system requirements.
• Designed for reuse and interoperability (define physical/logical interfaces).

– Defined to isolate dependencies, to ease porting.
– Defined to be adaptable in order to map to a variety of implementations.

• Defined such that they can be replaced by emerging standards as they mature and
are accepted by industry and DoD.

• Designed for testability (carry through conformance/validation requirements).

4 Include industry, academia, and standards bodies to the degree possible when
defining new API’s.

45/31/2001

API Based Software Reference
Architecture

• Concentrates on interface definition by identifying applicable APIs
and standards for physical and logical interfaces.
4Utilizes SAE GOA model as a clear concise framework to partition capability.
4Concentrates on interfaces to achieve interoperability, not products.

• Benefits of using an API based Architecture:
4Promotes reuse at multiple layers.
4Minimizes application impact from insertion of new technologies.
4Facilitates interoperability through the identification of unambiguous interface

definitions.
4Enables plug and play capability not only at the resource access services layer

(hw/drivers), but at the system services and application layers as well.

55/31/2001

Example Software Architecture based on
the Vetronics Reference Architecture

CoreCore
VetronicsVetronics

High EndHigh End
Real TimeReal Time

InformationInformation
SystemsSystems

High PowerHigh Power
Load MgmtLoad Mgmt

AutomotiveAutomotive
& Utility& Utility

PhysicalPhysical
ResourcesResources

ApplicationApplication

SystemSystem
ServicesServices

ResourceResource
AccessAccess

ServicesServices

Station
Mgmt

A
P
I

Perf, Anal,
& Mgmt

A
P
I

WSMS
A
P
I

Terrain
Services

A
P
I

FBCB2/
IC3

A
P
I

MSG
Parser

A
P
I

WSTAWG OE
A
P
I

Graphics Engine

AGIL
A
P
I

POSIX (RT) POSIX (Full)RTOS OSEK

Open GL X Windows

WSTAWG OE
A
P
I

CoreCore
VetronicsVetronics

High EndHigh End
Real TimeReal Time

InformationInformation
SystemsSystems

High PowerHigh Power
Load MgmtLoad Mgmt

AutomotiveAutomotive
& Utility& Utility

PhysicalPhysical
ResourcesResources

ApplicationApplication

SystemSystem
ServicesServices

ResourceResource
AccessAccess

ServicesServices

Station
Mgmt

A
P
I

Station
Mgmt

A
P
I

Perf, Anal,
& Mgmt

A
P
I

Perf, Anal,
& Mgmt

A
P
I

WSMS
A
P
I

WSMS
A
P
I

Terrain
Services

A
P
I

Terrain
Services

A
P
I

FBCB2/
IC3

A
P
I

FBCB2/
IC3

A
P
I

MSG
Parser

A
P
I

MSG
Parser

A
P
I

WSTAWG OE
A
P
I

WSTAWG OE
A
P
I

Graphics Engine

AGIL
A
P
I

AGIL
A
P
I

POSIX (RT) POSIX (Full)RTOS OSEK

Open GL X Windows

WSTAWG OE
A
P
I

65/31/2001

Operating Environment (OE) API

• OE is the mechanism to facilitate application porting among
platforms.

• Supports the development of portable, reusable applications.
4Support the development of embedded applications in heterogeneous

distributed real time environments.
4Provide semantic/behavioral correctness across varying OS and hardware

platforms with predictable performance.
4Provide extensibility and scalability to suit varying platform requirements.
4Support distributed applications integration environments.

• Communication and synchronization mechanisms developed to support the
relocation of OE applications among processors and LRUs within a system without
requiring the modification of application software.

4Support the development and interoperability of applications in multiple
programming languages (Ada 83, Ada 95, C) utilizing distinct OE vendor
implementations.

75/31/2001

Product: Standard Software Module (SSM)
Contract: Standard Army Vetronics Architecture (SAVA)
Contractor: FMC, GDLS, TI, General Electric
Time: 1988-1992

Product: Combat Vehicle Operating Env
 (CVOE)
Contractor: Raytheon

Product: Bradley OE
Contractor: UDLP-San Jose

Product: Vetronics RT Operating Services
 (VRTOS)
Contractor: TACOM
Time: 1995-1996

Product: Crusader OSS / RTCOE
Contractor: UDLP-Minneapolis

Product: WSTAWG OE API
Contractor: IPT
Time: 1997-Current

FSCS/Tracer

VTT STO

CAT/RF ATD

M2A3 VSIL

Crusader

Sensors
FLIRS

MLRS

Evolution of the OE Concept

85/31/2001

OE
Ver 1.0

6/98

OE
Ver 1.3

2/00

OE
Ver 2.0
FY01

Arinc 653

???

Raytheon (CVOE)

United Defense (RTCOE, OSS)

Us Army TARDEC (VRTOS)

POSIX (RT, Distributed, SRASS)

OAR Corporation (RTEMS)

SAE (OS API)

CORBA

Raytheon CVOE Prototype

OAR RTEMS Prototype

TARDEC Native/CORBA Prototype

UDLP OSS Prototype

Definition Prototyping Defect Resolution/
Enhancement

POSIX

RT CORBA

OE API Evolution

95/31/2001

Synchronization Communication Timing

ConfigurationNaming
Resource

Management Instrumentation

XOS
Services

POSIX1003.13
OS

Services

System
Services

Resource
Access Services

Application

CPU Network I/FHW
Devices

Physical
Resources

Driver
(Plug In)

Driver
(Plug In)

Driver
(Plug In)

Driver
(Plug In)

3X

4D

3D

2D

1D

3D

Network

4L

3L

2L

1L

OE API Services

105/31/2001

OE API Components

• API Specification
4Language Independent Specification (LIS).
4Based on CORBA Interface Definition Language (IDL).

• Language Bindings
4Ada 95 and C Language bindings.

• Binary Encodings
4Enables object access among distinct OE vendor implementations.
4Based on CORBA Common Data Representation (CDR).
4Provides opcode definitions and rules for interchange.
4Provides rules for object registration and naming.
4Provides protocol mappings (currently TCP/IP and Implementation Defined).

• Configuration
4 File structure and general syntax.
4 Partition structure and syntax.

115/31/2001

Adaptable Graphics Interface Language (AGIL)
API

• Isolates the graphics engine hardware and software dependencies
from the application software.
4Defines an interface between the system software application and a graphical

engine.
• The AGIL logical interface is defined via a language binding to a

set of packages:
4AGIL Primitives - Defines primitive data types/objects used in AGIL.
4AGIL Device - Defines the core AGIL component, encapsulating application

and graphics independence.
4AGIL Event - Defines the primary mechanism utilized for interconnecting

applications with the graphical device subsystem.
4AGIL Drawable - Defines a set of complex graphical objects built utilizing

the AGIL device API for development of an application SMI.

125/31/2001

Weapon Systems Mapping Services API

• Defines a set of detailed concepts, functionality, and interfaces
required to support the development of mapping applications, while
addressing underlying architectural support issues of embedded real
time systems (e.g. multitasking, reentrancy, and blocking/non-
blocking execution).

• The WSMS Architecture has been developed to provide:
4Application scalability, such that groups of functionality and differing data

standards and formats can be supported to meet varying system requirements.
4Application extensibility, such that future upgrades can be easily incorporated

to provide for advances in mapping system technologies.
4Support for the development of weapon system mapping implementations

meeting real time embedded performance and integration requirements.
4Support for the development of mapping implementations and applications

within varying application architectures using varied graphics subsystems,
hardware, software, and programming languages.

135/31/2001

WSMS API Architecture (Class Diagram)

• Developed as a set of abstract and concrete classes to implement
specific functionality in the areas of:
4Raster Maps
4Vector Maps
4DTED Maps
4Grids
4Overlays
4Self Icons

Lat_Long

MGRS

UTM 2525B Graphical_PrimitiveText Bitmap Ground_Vehicle

CADRG CIB FFD VMAP VITDDTED

Self_IconOverlaySymbolGrid

Session

Map

Raster Matrix Vector

145/31/2001

WSMS API Components

• API Specification
4Language Independent Specification (LIS).
4Described using a modified Backus Naur Form (BNF) notation.
4Abstracts graphical and OS dependencies:

• Graphics concepts are abstracted via a graphical implementation layer (GIL).
• Underlying graphical engine is not assumed (e.g. could be X, OpenGL, Win32,

DirectX, …).

• Language Bindings
4Ada 83, Ada 95, and C++ Language bindings.

155/31/2001

Terrain Services API

• Provides an interface to perform critical terrain analysis functions
independent of operating environment and application developer.

• Developed to maximize:
4Open-interfaces
4Component reuse
4Operational flexibility

• Primary Functions:
4Path Analysis
4Range Analysis
4Terrain Categorization
4Line of Sight

Developed in conjunction with ARDEC based
upon a portion of the Future Fire Decision

Support Software (F2DSS)

165/31/2001

Terrain Services API (Cont.)

• Path Analysis
4Calculation of mobility corridors.

• Determination of choke points or restrictions identification along a path.
• Calculation of travel times along a path.

• Range Analysis
4Computation of minimum time, route and location to intercept a moving

object.
4 Identification of possible locations at some future time for moving objects.

• Terrain Categorization
4Categorization of terrain with client selectable parameters.
4 Identification of areas within given parameters.

• Line of Sight
4Computation of visible line of sight from a location within an area.
4Computation of direct fire weapons line of sight area from a location.
4 Identification of optimal observation points within a given area.

175/31/2001

Vetronics Station (Generation)

App

App

App

App

App

App

App

App

Vetronics Station (Generation)

Gen

Gen

Gen

Gen

Collection, Monitoring, & Analysis

Supports:
- Distributed RT Integration
- Test
- Data Recording
- Data Analysis

Performance, Analysis & Measurement API

• Extensible tagged event/sequence generation, recording, and
monitoring system mapped to the “intelligent taxonomy” to measure
defined mission scenarios/tasks (end to end).

• Primary Functions:
4 Internal – Generation Component.
4External – Collection, Monitoring, & Analysis Component.

185/31/2001

Performance, Analysis & Measurement (Cont.)

• Generation Component (Internal)
4Application interface is provided as an OO API with Ada 95 and C++

bindings.
4Provides the ability to extend the base message to include additional

architecture and application-defined data fields.
4Provides the ability to control the routing and destination of output message

data (internally for recording or externally for monitor/analysis).

• Collection, Monitoring, & Analysis Component (External)
4Capture/Monitoring Functions:

• Provides the ability to capture directed message data from the system in real time.
• Provides the ability to retrieve/view/filter recorded data/messages from the target

system for analysis.

4Analysis Functions:
• Provides the ability to view recorded sequences (threads) as an end to end set of

actions.
• Provides the ability to measure timing between discrete events.

195/31/2001

Station Management API

• Provides a conceptual “software backplane” to facilitate application
integration and system upgrade.

• Primary Functions:
4Application loading and startup synchronization.
4Application runtime synchronization.
4Application subfunction health monitoring.

Vetronics Station

SM

App

App

SM

App

App

SM

App

App

SM

App

App

SM

App

App

SM

App

App

SM

App

App

SM

App

App

Vetronics Station

Vetronics Station

Vetronics Station

205/31/2001

Station Management API (Cont.)

• Architecture
4A station manager is resident on each computing node in the system, with one

station manager being designated as the master for the station.
• The station master provides for the synchronization of each node in the system.
• The station manager provides a base concept/set of operations for a system state

and mode and hardware registry which can be extended to a system specific
context as required for the application.

• Application loading and startup synchronization:
4Provides the ability to interpret a static configuration file in order to

dynamically load/start subfunctions among the computing elements within the
Vetronics stations.

• Application runtime synchronization:
4Provides the ability for application subfunctions to synchronize at defined

synch points.

• Application subfunction health monitoring.
4Provides the ability to monitor the application subfunction health.

• Provides the ability to report health anomalies to the system application.

